Davenport-Hasse theorem and cyclotomic association schemes
نویسنده
چکیده
Definition. Let q be a prime power and e be a divisor of q − 1. Fix a generator α of the multiplicative group of GF (q). Then 〈α〉 is a subgroup of index e and its cosets are 〈α〉α, i = 0, . . . , e− 1. Define R0 = {(x, x)|x ∈ GF (q)} Ri = {(x, y)|x, y ∈ GF (q), x− y ∈ 〈αe〉αi−1}, (1 ≤ i ≤ e) R = {Ri|0 ≤ i ≤ e} Then (GF (q),R) forms an association scheme and is called the cyclotomic scheme of class e on GF (q). The character table of the cyclotomic scheme is the first eigenmatrix of the association scheme. We will not give a formal definition here, instead, we show how to construct the character table of cyclotomic scheme from the character table of elementary abelian group. For a discussion of association scheme in general and the definition of the character table, see [2]. Consider the character table T of the additive group of F = GF (q):
منابع مشابه
Algebraic Number Theory Introduction
Galois group, 222adeles, 149Artin’s conjecture, 293automorphic form, 292bar resolution, 172biquadratic reciprocity, 271Brauer group, 205Brauer-Hasse-Noether theorem, 252central simple algebra, 206centralizer, 206chain map, 163change of group, 184Chebotarev density theorem, 282class formation, 222class group, 33cohomological functor, 16...
متن کاملQuadratic Forms over Global Fields
1. The Hasse Principle(s) For Quadratic Forms Over Global Fields 1 1.1. Reminders on global fields 1 1.2. Statement of the Hasse Principles 2 2. The Hasse Principle Over Q 3 2.1. Preliminary Results: Reciprocity and Approximation 3 2.2. n ≤ 1 6 2.3. n = 2 6 2.4. n = 3 6 2.5. n = 4 8 2.6. n ≥ 5 9 3. The Hasse Principle Over a Global Field 9 3.1. n = 2 10 3.2. n = 3 10 3.3. n = 4 11 3.4. n ≥ 5 12...
متن کاملOn Ramification Filtrations and p-adic Differential Equations, II: mixed characteristic case
Let K be a complete discretely valued field of mixed characteristic (0, p) with possibly imperfect residue field. We prove a Hasse-Arf theorem for the arithmetic ramification filtrations [2] on GK , except possibly in the absolutely unramified and non-logarithmic case, or p = 2 and logarithmic case. As an application, we obtain a Hasse-Arf theorem for filtrations on finite flat group schemes ov...
متن کاملApplications of Prime Factorization of Ideals in Number Fields
For a number fieldK, that is, a finite extension of Q, and a prime number p, a fundamental theorem of algebraic number theory implies that the ideal (p) ⊆ OK factors uniquely into prime ideals as (p) = p1 1 · · · p eg g . In this paper we explore different interpretations of this using the factorization of polynomials in finite and p-adic fields and Galois theory. In particular, we present some...
متن کاملNormal cyclotomic schemes over a finite commutative ring
We study cyclotomic association schemes over a finite commutative ring R with identity. The main interest for us is to identify the normal cyclotomic schemes C, i.e. those for which Aut(C) ≤ AΓL1(R). The problem is reduced to the case when the ring R is local in which a necessary condition of normality in terms of the subgroup of R defining C, is given. This condition is proved to be sufficient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006